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1. Introduction and summary

Recently, it has become clear that the problem of moduli stabilization may find its reso-

lution in the context of flux compactifications (see e.g. [1 – 3] for recent reviews). In most

recent models (starting with [4]) a crucial role is played by nonperturbative effects which

can generate a superpotential for the Kähler moduli. Within the context of M-theory com-

pactifications on Calabi-Yau fourfolds, as was first noted in [5], the nonperturbative effects

arise from fivebrane instantons wrapping internal divisors. In a dual IIB picture this setup

is equivalent to compactifications on Calabi-Yau threefolds, with instantons arising from

D3-branes wrapping internal divisors.

In [5] Witten showed that in the absence of flux a necessary condition for the gener-

ation of a superpotential is that the divisor which the fivebrane wraps possesses a certain

topological property: its arithmetic genus must be equal to one. When there are exactly

two fermion zeromodes (corresponding to rigid isolated cycles) a superpotential is indeed

generated. If more zeromodes are present, cancellations may occur. The lift of the arith-

metic genus criterion to F-theory in general and IIB orientifolds in particular, was given

by Robbins and Sethi in [6].

Recently attention has been drawn to the possibility that the arithmetic genus crite-

rion may be violated in the presence of flux [7 – 9] (a discussion of the effects of flux was

already presented in [6]). The authors of [9] defined a flux-dependent generalization of

the arithmetic genus, χF , to be discussed in more detailed in the following. χF is not,

strictly-speaking, an index: it cannot be defined as the dimension of the kernel minus the

dimension of the cokernel of some operator. At present it is not clear what should the

arithmetic genus criterion be replaced by in the presence of fluxes. In particular, it is not

clear whether the arithmetic genus criterion should simply be replaced by the condition

χF = 1 or not. Moreover, it is conceivable that instantons with four or more fermionic

zero-modes contribute to the superpotential,1 as there exist higher-order fermionic terms

in the worldvolume action of the fivebrane which may be used in order soak up the extra

zero modes. Clarifying these issues is crucial for realistic model-building.

The computation of M-theory instantons goes back to the work of Becker et al [11].

These techniques were further elaborated by Harvey and Moore [12] in the context of G2

compactifications. The subject of fivebrane instantons in M-theory has largely remained

unexplored, mainly due to the exotic nature of the fivebrane worldvolume theory. Instanton

effects in heterotic M-theory have been considered in [13 – 16].

Further progress beyond the computation of instantons with two zeromodes has been

hindered by the lack of knowledge of the theta-expansions of the supervielbein and C-

field in eleven-dimensional superspace. Recently there have been technical advances in this

direction reported in [17], which applies the normal-coordinates approach [18] to the case of

eleven-dimensional superspace. Using this method, the expression for linear backgrounds

was derived to all orders in θ, i.e. up to and including terms of order θ32. This constitutes

significant progress, taking to account the fact that previously this expansion was known

1Instantons with more than two zeromodes are known to contribute to higher-derivative and/or multi-

fermion couplings [10]. Here we examine whether such instantons can contribute to the superpotential.
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explicitly only to order θ2 [19]. Results exact in the background fields were also presented

up to and including terms of order θ5.

It is the purpose of this paper to perform an explicit computation in the case of five-

brane instantons with four fermion zeromodes, in the context of M-theory compactifications

on Calabi-Yau fourfolds in the presence of (normal) flux. We find that no superpotential

is generated in this case. Therefore, our result does not rule out the possibility that in the

presence of flux the arithmetic genus criterion should be replaced by the condition χF = 1.

As this is a somewhat technical paper, in the following subsections of the introduction

we have tried to put it in context and to summarize in a self-contained way the strategy

and the result of the computation.

1.1 Review of the arithmetic genus criterion

In [5] Witten argued that M-theory compactifications on Calabi-Yau fourfolds may gener-

ate a nonzero superpotential in three dimensions through fivebrane instantons wrapping

divisors of arithmetic genus one. We will now review his argument: consider a supersym-

metric M-theory background of the form R
1,2 × X, where X is a Calabi-Yau fourfold.2

Provided a certain topological condition is satisfied, this is a consistent M-theory back-

ground [20, 21]. Compactification on X results in an N = 2 theory in three dimensions

(four real supercharges). This theory is very similar to a supersymmetric N = 1 theory in

four dimensions, and we may think of it (although this is not necessary) as a dimensional

reduction from four to three dimensions. Similarly to the case in four dimensions, the

kinetic terms are obtained by integration over the whole superspace, whereas the Yukawa

couplings and the mass terms are obtained by integrating over half the superspace (F-

terms). Crucially, powerful nonrenormalization theorems prevent radiative corrections to

the F-terms.

Let us now describe the structure of the so-called ‘linear multiplets’, which play a

distinguished role in the discussion of [5] and in the following: the bosonic part of a linear

multiplet in four dimensions consists of a second-rank antisymmetric tensor and a real

scalar. The fact that the antisymmetric tensor is dual in four dimensions to a scalar, can be

promoted at the level of superfields to a duality between linear and chiral supermultiplets.

Upon reduction to three dimensions the chiral multiplets give rise to chiral multiplets,

whereas the linear multiplets become vector multiplets. In analogy to the situation in four

dimensions, a vector in three dimensions is dual to the a scalar provided there is no Chern-

Simons term arising from the compactification on the fourfold. In absence of fluxes there

is indeed no Chern-Simons term which could obstruct the dualization, but this is generally

no longer the case in the presence of fluxes [23, 24].

To be more explicit: upon compactification of M-theory on a Calabi-Yau fourfold, one

obtains b2 vectors from the threeform gauge field

C =

b2∑

I=1

AI(x) ∧ ωI + . . . , (1.1)

2Eventually we will work in Euclideanized eleven-dimensional space.
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where x is a (three-dimensional) spacetime coordinate and {ωI , I = 1, . . . b2} is a basis

of H2(X, R), which of course coincides with H1,1(X, R) for a Calabi-Yau fourfold. In the

absence of a Chern-Simons term in three dimensions the AIs can be dualized to b2 scalars,

which we will call the ‘dual scalars’ φI
D, dφI

D = ?dAI . Note that perturbatively there

are Peccei-Quinn symmetries whereby the dual scalars are shifted by constants; as we will

see in the following, these continuous symmetries can be broken by instantons to discrete

subgroups thereof. In addition to the φI
Ds there are b2 scalars, φI , from the deformations

of the Kähler form J ,

J =

b2∑

I=1

φI(x)ωI . (1.2)

After dualization, the bosonic fields of each vector multiplet in three dimensions (these are

the ‘descendants’ of the linear multiplets in four dimensions) consist of a pair of real scalars

(φI , φI
D). The superpotential W depends holomorphically on φI + iφI

D.

Following [5], we note that all terms in the superpotential depend on the vector mul-

tiplets. Indeed if there were any terms in the superpotential which did not depend on the

vector multiplets, they could be computed by scaling up the metric of X (since such terms

would be independent of the Kähler class, which belongs to the vector multiplets). But in

the limit where the metric is scaled up, M-theory reduces to supergravity and R
1,2 × X

becomes an exact solution — showing that there is no superpotential in this case.

To look for instantons which may generate a superpotential, we note that the threeform

gauge field is (magnetically) sourced by the fivebrane. Hence, a relevant instanton in three

dimensions is seen from the eleven-dimensional point-of-view as a fivebrane wrapping a

six-cycle Σ in the Calabi-Yau fourfold. In order for the instanton to preserve half the

supersymmetry (so that it may generate an F-term), the cycle Σ must be a holomorphic

divisor. This fact is re-derived in detail in section 4.2, in the presence of normal flux.

As can be verified explicitly, the contribution of the instanton includes the classical

factor
∫

d2θ0 e−(VolΣ+iφD) , (1.3)

where VolΣ is the volume (in units of the eleven-dimensional Planck length lP ) of the six-

cycle the fivebrane is wrapping, and φD is the linear combination of dual scalars which

constitutes the superpartner of VolΣ. I.e. the scalars (VolΣ, φD) form the real and imag-

inary parts of a chiral superfield, as is expected from the holomorphic property of the

superpotential (which is, in its turn, a consequence of supersymmetry). For the generation

of a superpotential, the fermionic terms in the fivebrane action should conspire so as to soak

up all but two of the fermion zeromodes. The Grassmann integration in (1.3) above is the

integration over the remaining fermionic zeromodes. As was then argued in [5], apart from

the classical factor above, the superpotential should be independent of the Kähler class.

This is because the dependence on φD is fixed by the magnetic charge of the instanton,

and so the dependence on VolΣ is in its turn fixed by holomorphy.
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Apart from the classical factor above, the steepest-slope approximation of the path

integral around the fivebrane instanton includes a one-loop determinant, which is indepen-

dent of the Kähler class but depends holomorphically on the complex structure moduli.

The one-loop result is in fact exact, as higher loops do not contribute to the superpotential.

This can be seen as follows: higher loops would be proportional to positive powers of lP
and would therefore scale as inverse powers of the volume; but, as already mentioned, apart

from the classical factor the superpotential cannot depend on the Kähler class.

A necessary criterion for a divisor Σ to contribute to the superpotential is that its

arithmetic genus χ,

χ =

3∑

p=0

(−1)php,0(Σ) , (1.4)

is equal to one. This was arrived at in [5] by the following line of arguments: first note that,

in the limit where Σ is scaled up, the U(1) rotations along the normal direction to Σ inside

the fourfold become an exact symmetry (dubbed ‘W -symmetry’ in [5]) of M-theory. On

the other hand, in the absence of fluxes the worldvolume theory of the fivebrane has a one-

loop W -anomaly equal to χ. It must then be that the exponential in (1.3) has W -charge

equal to −χ.3 Moreover, it is straightforward to see that the fermionic zeromode measure

carries W -charge equal to one. It follows that a necessary condition for the generation of

a superpotential is χ = 1; this is the arithmetic genus criterion.

1.2 Caveats to the arithmetic genus criterion

As already anticipated in [5], the arithmetic genus criterion may be violated in cases where

the assumption of W -symmetry fails. This can occur if there are couplings of the fermions to

normal derivatives of the background fields (i.e. normal to the divisor Σ inside X). Indeed,

in the presence of flux such couplings are present already in the ‘minimal’ quadratic-fermion

action θ 6Dθ, where 6D is a flux-dependent Dirac operator which we will define more precisely

in the following. Even in the absence of flux, W -violating couplings will generally be present

at higher orders in the fermions, they will however be suppressed in the large-volume limit.

A further complication is the following: in the presence of flux, there is a Chern-Simons

term in the three-dimensional low-energy supergravity,

TIJdφI ∧ AJ , (1.5)

which will a priori obstruct the straightforward dualization of the vectors AI to scalars

φI
D [23, 24]. One may therefore worry about the fate of holomorphy, on which the derivation

of the arithmetic genus criterion relied. (Recall that the holomorphic property of the

superpotential allowed us to take the large-volume limit in which the W -symmetry becomes

exact). The object TIJ which enters the Chern-Simons term above is a constant symmetric

3Note that Witten’s paper [5] was written before the cancellation of the normal-bundle anomaly of the

fivebrane was properly understood in [22]. It would be interesting to derive this result directly using the

techniques of [22].
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matrix given by

TIJ :=
∂2T

∂φI∂φJ
=

∫

X
F ∧ ωI ∧ ωJ

T :=
1

2

∫

X
F ∧ J ∧ J =

1

2
TIJφIφJ , (1.6)

where F is the internal component of the fourform flux. Its quantization condition is

equivalent to the expansion

F =

b4∑

a=1

naωa +

b2∑

I=1

dAI ∧ ωI , (1.7)

where {ωa, a = 1 . . . b4} is a basis of H4(X, Z), and the nas are integers. An additional effect

of the flux is the gauging of the the Peccei-Quinn isometries. The gauging is completely

determined by the constant matrix TIJ .

Contrary perhaps to the naive expectation, the dualization of vectors to scalars can

proceed more-or-less straightforwardly also in the case with fluxes. Let us assume for

simplicity that we work in a basis of H2(X, R) such that TIJ is diagonal, and for the moment

let’s assume that the complex structure moduli are frozen. It then follows from the work

of [25] (which is based on general results on three-dimensional gauged supergravities [26])

that (i) the isometries φI
D → φI

D + constant corresponding to zero eigenvalues of TIJ

are not gauged and (ii) if φI
D → φI

D + constant is an isometry which does get gauged,

the superpotential cannot depend on φD (nor can it depend on the Kähler modulus φI ,

by holomorphy).4 This picture is consistent with the conclusions of [29] who find (in

the context of IIA string theory) that those isometries which are gauged by the flux are

protected from quantum corrections.

1.3 The results of the present paper

In the presence of fluxes, the scalar potential of the low-energy three-dimensional super-

gravity is still given in terms of the holomorphic superpotential W , but in addition will

also generally depend on T . On the other hand the fermion bilinears

χIχJDIDJW + c.c. , (1.8)

where DI is a Kähler-covariant derivative, solely depend on the holomorphic superpotential,

W , even in the presence of fluxes [26]. ( Fermion mass terms of the form χ̄IχJMIJ do

depend on T , as we will see in section 5.1). Hence, a straightforward way to obtain

instanton corrections to the superpotential is to compute the coupling (1.8).

For the purpose of examining the possible generation of a superpotential by instanton

effects, it follows from the discussion in section 1.2 that we only need examine whether

the coupling (1.8) is generated for fermions χI which correspond to zero eigenvalues of TIJ

4On the other hand, if there are additional fields which are charged under the gauge potential, this

conclusion may be relaxed [27]. We thank M. Haack for pointing this out. In the present context, such

phenomena may arise presumably in the presence of M2 branes [28] and will not be examined here.
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(we may consider a basis where TIJ is diagonal, for simplicity). Hence, we may assume

that the Kähler moduli corresponding to nonzero eigenvalues of TIJ are frozen to zero.5 In

other words we can assume, as follows from (1.2), (1.6), that we are in the region of the

Kähler moduli space where:
∫

X
F ∧ J ∧ ωI = 0; I = 1 . . . b2 . (1.9)

If no such region exists, i.e. if TIJ has no zero eigenvalues, all isometries are gauged and

there can be no superpotential dependence on the Kähler moduli: the superpotential is

protected against instanton contributions. Moreover, condition (1.9) implies that

ωIyF = 0 , (1.10)

for all ωIs corresponding to zero eigenvalues of TIJ . This observation simplifies somewhat

the rather tedious computational task of this paper. In particular, we may assume we are in

the region of the Kähler moduli space where the flux is primitive: JyF = 0. Furthermore,

for the purposes of the present computation we may assume that the complex structure

moduli are frozen to values such that the internal fourform flux is of type (2,2). These are

exactly the conditions which ensure that the flux is compatible with supersymmetry, as we

will see in detail in section 4.1.

Despite the fact that certain conceptual subtleties remain, there are clear rules for

instanton computations in M-theory first put forward in [11] and subsequently elucidated

in [12]. We will schematically describe the procedure here, relegating the details to the main

body of the paper. In order to compute the instanton contribution to the coupling (1.8), one

first decomposes the eleven-dimensional gravitino in terms of three-dimensional fermions

χI ,

Ψm = χI ⊗ ΩI,mξ , (1.11)

where ξ is the covariantly constant spinor of the Calabi-Yau fourfold6 and ΩI is a one-form

on X valued in the Clifford algebra Cl(TX). Next, from the fivebrane action one reads off

the coupling of the eleven-dimensional gravitino to the fivebrane worldvolume fermion θ,

schematically:

V =
∑

n

cnΨθ2n+1 , (1.12)

for some, possibly flux-dependent, ‘coefficients’ cn. The coupling V is the ‘gravitino vertex

operator’. Finally, to read off the coefficient DIDJW in (1.8) one evaluates the correlator

〈V V 〉 in the worldvolume theory of the fivebrane.

5Since the superpotential does not depend on these moduli, we may fix them to any desired value: the

superpotential, and hence the coupling (1.8), is independent of the chosen value. The present choice leads

to convenient computational simplifications. Examples of fourfolds for which there are choices of fourform

flux such that TIJ vanishes identically, were examined in [30].
6In the presence of flux, the internal space becomes a warped Calabi-Yau. As we will see, however, the

effect of the warp factor can be ignored at leading order in the large-volume expansion.
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Note that the worldvolume fermions are valued in the normal bundle to the fivebrane,

which is the sum of TR
3 (after passing to Euclidean signature) and the normal bundle

to the divisor inside the fourfold. Thus, each worldvolume fermion should be thought

of as tensored with a two-component spinor of Spin(3). The main result of the present

paper is that instantons with exactly four fermionic zeromodes do not contribute to the

superpotential. In deriving this result we have made the simplifying assumption that both

the curvature of the worldvolume self-dual tensor as well as the pull-back of the threeform

flux onto the worldvolume vanish. This is what we call the condition of ‘normal flux’.

One major technical difficulty with the present computation is the explicit expansion of

the fivebrane action in terms of the worldvolume fermion, the so-called ‘theta-expansion’.

This, in its turn, stems from the theta-expansion of the eleven-dimensional background

superfields on which the fivebrane action depends. Until recently, this expansion had only

been fully worked out to quadratic order in the fermions. The present computation is

now possible thanks to the recent results of [17] in which, among other things, the theta-

expansion of the eleven-dimensional superfields was computed explicitly to fifth order in

the fermions.

We should at this point elaborate on what we mean by ‘the fivebrane action’. The

fivebrane dynamics was given in terms of covariant field equations in [31, 32]. For the ap-

plication we are interested in, however, one needs to work with an action. As is well known,

the worldvolume theory of the fivebrane contains a self dual antisymmetric tensor which

renders the formulation of an action problematic. A covariant supersymmetric action for

the fivebrane can be constructed with the help of an auxiliary scalar [33]. Alternatively,

the auxiliary field can be eliminated at the expense of explicitly breaking Lorentz invari-

ance [34]. The equivalence of all different formulations was shown in [35]. Here we will use

the covariant action of [33].

An important cautionary remark is in order. In [36] Witten pointed out that a useful

way to define the action of a self-dual field is in terms of a Chern-Simons theory in one

dimension higher. This definition, for spacetime dimensions higher than two, involves a

suitable generalization of the notion of spin structure — on a choice of which the self-dual

action depends. These issues have been recently clarified by Belov and Moore [37, 38].

Unfortunately, the action of [33] does not take these topological aspects into account; it is

however at present our only available (covariant) supersymmetric action for the fivebrane.

1.4 Outline

We now give a detailed plan of the rest of the paper. Section 2 relies on [17] treating

the theta-expansion of the various superfields of the eleven-dimensional background, with

the aim of applying it to the worldvolume theory of the fivebrane. The theta expansion

of the sixform potential was not considered in [17], and this is addressed in section 2.2.

The worldvolume theory of the fivebrane is considered in section 3 in the framework of the

covariant action of [33]. Eventually we make the simplifying assumption that the flux is

‘normal’, i.e. that both the field-strength of the worldvolume antisymmetric tensor and the

pull-back of the background threeform flux onto the fivebrane worldvolume, vanish. The
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main result of this section is the form of the gravitino vertex operator in the case of normal

flux, equation (3.5).

Section 4.1 considers M-theory backgrounds of the form of a warp product R
1,2 ×w X,

where X is a Calabi-Yau fourfold. (Eventually we Wick-rotate to Euclidean signature and

take the large-volume limit in which the warp factor becomes trivial). Requiring N = 2

supersymmetry in three dimensions (four real supercharges) implies certain restrictions on

the fourform flux, equation (4.4). Next we consider fivebrane instantons such that the

worldvolume wraps a six-cycle Σ ⊂ X and we assume that X can be thought of as the

total space of the normal bundle of Σ inside X. As discussed in the introduction, this

approximation becomes more accurate as the size of Σ is scaled up. Imposing the normal-

flux condition, the form of the background flux simplifies further, equations (4.7), (4.8).

In section 4.2 we show that, in the case of normal flux, demanding that the in-

stanton preserve one-half the supersymmetry of the background implies that Σ is an

(anti)holomorphic cycle. Section 4.3 treats the worldvolume fermion zeromodes of the flux-

dependent Dirac operator, equation (4.19). After decomposing the background fermion in

terms of forms on the fivebrane, we derive the explicit expression of the fermion zero-

modes (4.36). This result agrees with the analysis of [8, 9], in the case of normal flux and

provided the warp factor is trivial. This can be consistently taken to be the case in the

large-volume limit, as explained in section 4.1.

In section 5 we finally come to the main subject of the paper, the instanton contribu-

tions to the superpotential. Section 5.1 discusses the Kaluza-Klein Ansatz for the gravitino,

equation (5.1). Next, the Kaluza-Klein ansätze for the gravitino as well as for the fermion

zeromodes are substituted into the expression (3.5) for the gravitino vertex operator. The

result of the fermion zeromode integration in the case of two zeromodes is briefly discussed

in section 5.2. In section 5.3 it is shown that in the case of four fermion zeromodes the

result of the zeromode integration is zero. I.e. in this case the instanton contribution to

the superpotential vanishes.

The appendices contain several useful technical details. For quick reference, we have

also included an index of our conventions and notation in section D.

2. Theta-expansions

This section examines the theta-expansions of the various eleven-dimensional superfields.

Except for the expansion of the sixform which is given in section 2.2, these were treated

in reference [17] to which the reader is referred for further details. For reasons which are

explained below (3.5), for our purposes we will not need the explicit form of the Ψ2 contact

terms. It also suffices to keep terms up to and including order θ3. Also note that we

are using standard superembedding notation, whereby target-space indices are underlined.

Further explanation of the notation can be found in appendix D.

2.1 Vielbein and threeform

Using the formulæ in [17], to which the interested reader is referred for further details, we

– 9 –
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find

Em
a = em

a − i

2
(DmθΓaθ) +

1

24
(DmθGΓaθ) +

1

24
(θRnpIm

npΓaθ)

− i(ΨmΓaθ) +
1

6
(ΨmGΓaθ) +

1

6
(ΨnpIm

npΓaθ) + O(Ψ2, θ5) , (2.1)

where

(G)α
β :=

1

576

{
(θΓabcdef )α(θΓef )β − 2(θΓe)α(θΓabcde)β − 16(θΓa)α(θΓbcd)β

+24(θΓab)α(θΓcd)β
}
Gabcd , (2.2)

(Im
ef )α

β := − 1

48

{
(θΓab)α(θΓm

abef )β + 4(θΓma)α(θΓaef )β − 4(θΓab)α(θΓabe)βem
f

+6(θΓm)α(θΓef )β − 12(θΓa)α(θΓae)βem
f
}

. (2.3)

Using (2.1) we find for the Green-Schwarz metric

gmn = Gmn − 1

4
(DmθΓaθ)(DnθΓaθ) − i(D(mθΓn)θ) +

1

12
(D(mθGΓn)θ)

+
1

12
(θRpqI(m

pqΓn)θ) − 2i(Ψ(mΓn)θ) +
1

3
(Ψ(mGΓn)θ)

+
1

3
(ΨpqI(m

pqΓn)θ) − (Ψ(mΓaθ)(Dn)θΓaθ) + O(Ψ2, θ5) . (2.4)

Similarly, for the pull-back of the three-form we find

Cmnp = cmnp −
3i

2
(D[mθΓnp]θ) +

1

8
(D[mθGΓnp]θ) +

1

8
(θRpqI[m

pqΓnp]θ) (2.5)

− 3

4
(D[mθΓn

aθ)(Dp]θΓaθ)− 3i(Ψ[mΓnp]θ) − (Ψ[mΓn
aθ)(Dp]θΓaθ)

− 2(Ψ[mΓaθ)(DnθΓp]aθ) +
1

2
(Ψ[mGΓnp]θ) +

1

2
(ΨnqI[m

nqΓnp]θ) + O(Ψ2, θ5) .

2.2 Sixform

The θ-expansion for C6 was not given in [17], but the same methods can be applied in this

case. First we note that the C6-field satisfies

7∂[M1
CM2...M7}

= GM1...M7
. (2.6)

Up to a gauge choice, the following is a solution of the Bianchi identity (2.6) at each order

in the θ expansion:

C(0)
µ1... µ6

= C(0)
µ1... µ5m1

= . . . C(0)
µ1m1...m5

= 0 ,

7∂[m1
C

(0)
m2...m7] = G(0)

m1...m7
(2.7)
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and

C(n+1)
µ1...µ6

=
1

n + 7
θλG

(n)
λµ1... µ6

C(n+1)
µ1...µ5m1

=
1

n + 6
θλG

(n)
λµ1... µ5m1

C(n+1)
µ1...µ4m1m2

=
1

n + 5
θλG

(n)
λµ1... µ4m1m2

C(n+1)
µ1 µ2 µ3m1m2m3

=
1

n + 4
θλG

(n)
λµ1 µ2 µ3m1m2m3

C(n+1)
µ1 µ2m1...m4

=
1

n + 3
θλG

(n)
λµ1 µ2m1...m4

C(n+1)
µm1...m5

=
1

n + 2
θλG

(n)
λµm1...m5

C(n+1)
m1...m6

=
1

n + 1
θλG

(n)
λm1...m6

, n ≥ 0 . (2.8)

Using the fact that

Ga1...a5α1α2
= −i(Γa1...a5

)α1α2
, (2.9)

we find for the right-hand sides of the equations (2.8),

θλGλµ1... µ6 = 6iE(µ1

a1 . . . Eµ5
a5Eµ6)

α(Γa1...a5
θ)α

θλGλµ1... µ5m = − 5iEm
a1E(µ1

a2 . . . Eµ4
a5Eµ5)

α(Γa1...a5
θ)α

+ iEµ1
a1 . . . Eµ5

a5Em
α(Γa1...a5

θ)α

θλGλµ1... µ4m1m2
=4iEm1

a1Em2

a2E(µ1

a3Eµ2
a4Eµ3

a5Eµ4)
α(Γa1...a5

θ)α

+ 2iEµ1
a1 . . . Eµ4

a4E[m1

a5Em2]
α(Γa1...a5

θ)α

θλGλµ1 µ2 µ3m1m2m3
= − 3iEm1

a1Em2

a2Em3

a3E(µ1

a4Eµ2
a5Eµ3)

α(Γa1...a5
θ)α

+ 3iEµ1
a1Eµ2

a2Eµ3
a3E[m1

a4Em2

a5Em3]
α(Γa1...a5

θ)α

θλGλµ1 µ2m1...m4
= + 2iEm1

a1 . . . Em4

a4E(µ1

a5Eµ2)
α(Γa1...a5

θ)α

+ 4iEµ1
a1Eµ2

a2E[m1

a3Em2

a4Em3

a5Em4]
α(Γa1...a5

θ)α

θλGλµm1...m5
= − iEm1

a1 . . . Em5

a5Eµ
α(Γa1...a5

θ)α

+ 5iEµ
a1E[m1

a2 . . . Em4

a5Em5]
α(Γa1...a5

θ)α

θλGλm1...m6
=6iE[m1

a1 . . . Em5

a5Em6]
α(Γa1...a5

θ)α . (2.10)

In the following we will only need the part ∆C6 of C6 which is linear in the gravitino.

Plugging the expressions for the vielbein components given in [17] into (2.10) we obtain

∆Cm1...m6 = − 6i(Ψ[m1
Γm2...m6]θ) + 10(Ψ[m1

Γaθ)(Dm2θΓm3...m6]aθ)

+ (Ψ[m1
GΓm2...m6]θ) + (ΨpqI[m1

pqΓm2...m6]θ)

− 5(Ψ[m1
Γm2...m5aθ)(Dm6]θΓaθ) + O(Ψ2, θ5) . (2.11)

3. Fivebrane action

We are now ready to consider the application of the theta-expansion discussed in the

previous section to the case of the fivebrane worldvolume action. As already mentioned
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in the introduction, we will adopt the covariant framework of [33] to which the reader is

referred for more details. The main result of this section is the gravitino vertex operator,

equation (3.5) below. To improve the presentation, we have relegated the details of the

derivation to appendix C.

The fivebrane action is of the form

S = S1 + S2 + S3 , (3.1)

where

S1 := TM5

∫

Σ
d6x

√
−det(gmn + iH̃mn)

S2 := TM5

∫

Σ
d6x

√−g
1

4
H̃mnHmn

S3 := TM5

∫

Σ

(
C6 +

1

2
F3 ∧ C3

)
(3.2)

and TM5 ∼ l−6
P is the fivebrane tension. Moreover, we have made the following definitions

Hmnp := Fmnp − Cmnp

Hmn := Hmnpv
p

H̃mn :=
1

6
√−g

εmnpqrsvpHqrs

vp :=
∂pa√−gmn∂ma∂na

, (3.3)

where Fmnp is the field-strength of the world-volume chiral two-form and a is an auxiliary

world-volume scalar. It follows from the above definitions that

det(δm
n + iH̃m

n) = 1 +
1

2
trH̃2 +

1

8
(trH̃2)2 − 1

4
trH̃4 . (3.4)

3.1 The gravitino vertex operator

In the case of normal flux, i.e. when the world-volume two-form tensor is flat (Fmnp = 0)

and the pull-back of the three-form potential onto the fivebrane vanishes (cmnp = 0), the

expression for the gravitino vertex operator simplifies considerably. Skipping the details of

the derivation, which can be found in appendix C, the final result reads:

V = TM5

∫

Σ
d6x

√
−G

{
2(ΨmΓmθ) + i(ΨmV (2)m) +

i

3
(ΨmGΓmθ)

+
i

3
(ΨpqIm

pqΓmθ) + O(Ψ2, θ5)
}

.

(3.5)
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We can now see why the Ψ2 contact-terms can be neglected. As is easy to verify, Ψ2 terms

first appear in the θ-expansion at order θ4. Consequently, a single vertex-operator insertion

VΨ2 is needed to saturate the four fermion zeromodes –which is the case examined here.

A single insertion, however, is proportional to TM5 and is of order O(l6P ) relative to two

vertex-operator insertions: the latter give a contribution proportional to T 2
M5. Clearly,

this analysis is valid provided the ‘radius’ of the six-cycle is much larger than the Planck

length, VolΣ >> l6P .

As was shown in the case of the M-theory membrane [39] and is also expected in the

case of the fivebrane [40], the first higher-order correction to the world-volume action occurs

at order l4P . Hence it would be inconsistent to include contact terms without considering the

higher-order derivative corrections to the world-volume action. Moreover, at order l6P (eight

derivatives) there are higher-order curvature corrections to the background supergravity

action7 which, as was explained in [17], modify the θ-expansion of all superfields.

3.2 Quadratic fermion terms

It follows from the preceding sections that in a bosonic background (Ψ
α
m = 0) the part of

the Lagrangian quadratic in θ (this is the analogue of equations (38), (39) of [42]) is given

by

L(quad) =
i

2

√
det(Ai

j)(A−1)(mn)(θΓmDnθ)

− εlpqrs
m

6
√
−G

√
det(Ai

j)(A−1)[mn](θΓ(nDl)θ)ap(Fqrs − cqrs)

− εklpqrs

24
√
−G

√
det(Ai

j)(A−1)klap

×
{
(Fqrs − cqrs)

[
aman(θΓmDnθ) + (θΓmDmθ)

]
+ 3(θΓqrDsθ)

}

− iεklpqrs

24
√
−G

aka
m(Flpq − clpq)

×
{
(Frst − crst)

[
atan(θΓnDmθ) +

1

2
(θΓtDmθ)

]
+

1

2
(θΓrsDmθ)

}

− iεklpqrs

48
√
−G

aka
n(Flpq − clpq)(Frs

t − crs
t)(θΓnDtθ)

− iεklpqrs

2 × 5!
√
−G

{
15atak(Flpt − clpt)(θΓqrDsθ)− 10atak(Flpq − clpq)(θΓrtDsθ)

− 5Fklp(θΓqrDsθ) − (θΓklpqrDsθ)
}

. (3.6)

Note that L(quad) is related to V
(1)m

α in a simple way.

7The eleven-dimensional supergravity admits a supersymmetric deformation at order l3P (five deriva-

tives) [41]. On a topologically-nontrivial spacetime M such that p1(M) 6= 0, this deformation can be

removed by a C-field redefinition, at the cost of shifting the quantization condition of the fourform field-

strentgh.
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Normal flux. In this case the part of the Lagrangian quadratic in the fermions simplifies

to

L(quad) =
i

2

{
(θΓmDmθ) +

εklpqrs

5!
√
−G

(θΓklpqrDsθ)
}

. (3.7)

After Wick-rotating we obtain

L(quad) = −(θΓmDmθ) , (3.8)

where we have taken (C.23) into account, and we have noted that after gauge-fixing the

physical fermion modes satisfy P+θ = θ.

4. Supersymmetric cycles

This section is devoted to the analysis of the conditions for a supersymmetric six-cycle, and

the derivation of the worldvolume fermionic zeromodes in the presence of (normal) flux.

4.1 M-theory on fourfolds

We start by reviewing M-theory on a Calabi-Yau fourfold with flux. Let the eleven-

dimensional metric be of the form

ds2 = ∆−1ds2
3 + ∆1/2ds2

8 , (4.1)

where ds2
3 is the metric of three-dimensional Minkowski space, ∆ is a warp factor, and

ds2
8 is the metric on X. Let us also decompose the eleven-dimensional Majorana-Weyl

supersymmetry parameter η in terms of a real anticommuting spinor ε along the three-

dimensional Minkowski space, and a real chiral spinor ξ on X:

η = ∆−1/4ε ⊗ ξ . (4.2)

As was first shown in [43], the requirement of N = 1 supersymmetry in three dimensions

(two real supercharges) leads to the condition

∇mξ = 0 , (4.3)

i.e. the ‘internal’ spinor is covariantly constant with respect to the connection associated

with the metric gmn on X. Under the Ansatz (4.2), requiring N = 2 supersymmetry in

three dimensions implies the existence of two real covariantly-constant spinors ξ1,2 of the

same chirality. It follows that X is a Calabi-Yau four-fold. In the following we shall combine

ξ1,2 into a complex chiral spinor on X, ξ := ξ1 + iξ2. An antiholomorphic (0, 4) fourform

Ω and a complex structure J on X can be constructed as bilinears of ξ, as is discussed in

detail in appendix B. Moreover, supersymmetry imposes the following conditions on the

components of the fourform field-strength:

G = Vol3 ∧ d∆−3/2 + F , (4.4)
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where F is a fourform on X which is purely (2, 2) and traceless, JyF = 0, with respect

to the complex structure J on X. We have denoted by Vol3 the volume element of the

three-dimensional Minkowski space. Finally, the warp factor is constrained by the Bianchi

identities to satisfy

d ? d log∆ =
1

3
F ∧ F − 2

3
(2π)4βX8 , (4.5)

where β is a constant of order l6P , and the Hodge star is with respect to the metric on X.

The second term on the right-hand side of the equation above is a higher-order correction

related to the fivebrane anomaly. In general there will be other corrections of the same

order which should also be taken into account. However, it can be argued that in the

large-radius approximation it is consistent to only take the above correction into account

(see [44], for example).

In the large-volume limit gCY = tgCY
0 + . . . , t → ∞, the two terms on the right-

hand side of (4.5) scale like t−3 relative to the left-hand side and can be neglected. It is

therefore consistent to take the warp factor to be trivial, ∆ = 1 [45]. We will henceforth

assume this to be the case. In particular, it follows from (4.4) that the fourform’s only

nonzero components are along the Calabi-Yau fourfold. Note that the integrated version

of equation (4.5),
∫

X
F ∧ F +

β

12
χ(X) = 0 , (4.6)

is the tadpole cancellation condition.

Finally, note that the normal flux condition, together with the constraints of super-

symmetry on the fourform flux explained in section 4.1, imply that F is of the form

Fmnpq = 4F̃[mnpKq] + 4F̃ ∗
[mnpK

∗
q] , (4.7)

where F̃ obeys

JyF̃ = 0; ιKF̃ = ιK∗F̃ = 0 (4.8)

and K is a complex vector field normal to the fivebrane worldvolume, see eq. (4.20) below.

The above results can be extended to include more general fluxes [46, 47]. In this case

the internal manifold generally ceases to be Calabi-Yau.

4.2 Supersymmetric cycles

Consider a bosonic superembedding of the fivebrane (Xm(σ), θ µ(σ) = 0) in a bosonic

background (Ψm
α = 0), where σm is the coordinate on the fivebrane worldvolume. The

fivebrane action is invariant under superdiffeomorphisms

δζZ
M = ζAEA

M (4.9)

such that

LζEM
A = −(∂M + ΩMB

A)ζB − ζBTBM
A = 0 . (4.10)
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This can be seen by first noting that

LζC3 = d(ιζC3) + ιζG4 . (4.11)

The first term on the right-hand side pulls back to a total derivative on the fivebrane

worldvolume, which can be compensated by a gauge transformation. The pull-back of the

second term on the right-hand side vanishes for a bosonic background at θ = 0, as can be

seen by (4.13) below and by taking into account that the only nonzero components of G4

are Gabαβ and Gabcd. Similarly, the WZ term transforms under (4.9) as
∫

W6

Lζ(C6 +
1

2
F3 ∧ C3) =

∫

W6

ιζ(G7 +
1

2
H3 ∧ G4) , (4.12)

where we have dropped a total derivative from the integrand. Again, this vanishes for a

bosonic background at θ = 0. Finally, the Green-Schwarz metric is manifestly invariant

under (4.9), (4.10).

Condition (4.10) can be solved for ζ, order by order in a θ-expansion. By taking the

torsion constraints into account, it can be shown that

ζα = ηα(X) + O(θ2)

ζa = i(ηΓaθ) + O(θ3) , (4.13)

where ηα is a Killing spinor,

Dmηα(X) = 0 . (4.14)

Transformation (4.9) corresponds to a zero mode iff it can be compensated by a κ-

transformation, i.e. iff there exists κα(σ) such that

ηα(X(σ)) + κα(σ) = 0 . (4.15)

On the other hand κ satisfies κβΓ̄β
α = κα, where

Γ̄(σ) :=
1√

det(δr
s + iH̃r

s)

{ 1

6!

εm1...m6

√−g
Γm1...m6 +

i

2
ΓmnpH̃

mnvp (4.16)

− 1

16

εm1...m6

√−g
H̃m1m2H̃m3m4Γm5m6

}
,

so that Γ̄2 = 1. Hence (4.15) is equivalent to

η β(X(σ))(1 − Γ̄(σ))β
α = 0 , (4.17)

with Γ̄(σ) evaluated for the bosonic fivebrane superembedding in the bosonic background.

To summarize: the ‘global’ zero modes are given by

θα(σ) = ηα(X(σ)) , (4.18)

where η satisfies (4.14), (4.17). Consequently, θα is annihilated by Dm = ∂mXmDm and

hence obeys the Dirac equation on the fivebrane:

ΓmDmθ = 0 , (4.19)

which follows from the quadratic part of the fivebrane action (3.8). I.e. ‘global’ zero modes

give rise to zero modes on the fivebrane. The converse is not generally true.
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Supersymmetric cycles in the case of normal flux. For a large six-cycle Σ, X can

be approximated by the total space of the normal bundle of Σ in X as in [5]. Equivalently,

Σ can be specified by a complex vector field K on X such that

ds2(X) = Gmndσm ⊗ dσn + K ⊗ K∗ , (4.20)

where Gmn(σ) is the metric of Σ, and KmGmn = 0. We shall normalize K as in appendix B,

|K|2 = 2, in which case the determinants of the metrics on X, Σ are equal.

The kappa-symmetry projector simplifies considerably in the case of normal flux. Pass-

ing to the static gauge and Wick-rotating, condition (4.17) can be seen to be equivalent

to
(
1 − KmK∗nεmn

m1...m6

2 × 6!
√

G
Γm1...m6

)
ξ = 0 . (4.21)

Furthermore, using the formulæ in the appendix, equation (4.21) can be rewritten as

P+ξ = ξ; P+ :=
1

2

(
1 +

1

2
KmK∗nΓmnΓ9

)
. (4.22)

The normal vector K is not a priori holomorphic with respect to the complex structure of

X. However, it is straightforward to see from (4.22) that

Jm
nKn = −iKm . (4.23)

It follows that in the case of normal flux, supersymmetric cycles are antiholomorphic cycles.

4.3 Zero modes

We are now ready to come to the analysis of the fermionic zeromodes on the worldvolume

of the fivebrane. The main result of this section is given in (4.34) below. In the process we

make contact with the earlier results of [8, 9]. The form of the Dirac operator in the linear

approximation was derived in [48].

A note on notation: in the remainder of the paper, lower-case Latin letters from the

middle of the alphabet (m,n, . . . ) denote indices along X (as opposed to indices along the

fivebrane worldvolume).

Spinors-forms correspondence on X. Using formulæ (B.6) in appendix B we can see

that any chiral spinor λ+ on X can be expanded as

λ+ = Φ(0,0)ξ + Φ(2,0)
mn γmnξ + Φ(4,0)

mnpqγ
mnpqξ , (4.24)

where Φ(p,0) is a (p, 0)-form with respect to the complex structure J . I.e. Φ(2,0) is in the

6 of SU(4) and Φ(4,0) is a singlet. Similarly in the case of an antichiral spinor λ− we can

expand

λ− = Φ(1,0)
m γmξ + Φ(3,0)

mnpγmnpξ , (4.25)

where Φ(1,0) is in the 4 of SU(4) and Φ(3,0) is in the 4̄. More succinctly, the equations

above are nothing but the equivalence

S+
∼= Λ(even,0)

S−
∼= Λ(odd,0) , (4.26)

which can be shown to hold in the case of a Calabi-Yau manifold.
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Spinors-forms correspondence on the fivebrane. We will now assume that the five-

brane wraps a supersymmetric cycle, as described above. Ignoring the three flat directions

for simplicity, after gauge-fixing the kappa-symmetry the fermions on the worldvolume of

the fivebrane transform as sections of the tensor product

S+ ⊗ (S+(N) ⊕ S−(N)) ∼= Λ(0,0) ⊕ Λ(2,0) ⊕ K ⊕ (K ⊗ Λ(2,0))

∼= Λ(0,0) ⊕ Λ(2,0) ⊕ Λ(0,1) ⊕ Λ(0,3) , (4.27)

where S±(N) are the positive-, negative-chirality spin bundles associated to the normal

bundle N of Σ in X, Λ(p,0) is the bundle of (p, 0)-forms on Σ, and K is the canonical

bundle of Σ. The first equivalence above can be shown by taking the adjunction formula

into account, and the triviality of the canonical bundle of X. The second equivalence

is proven by noting that K ⊗ Λ(3−p,0) ∼= Λ(0,p), as can be seen by contracting with the

antiholomorphic (0, 4)-form on X.

More explicitly, after gauge-fixing the kappa-symmetry, the physical fermion θ on the

world-volume Σ can be expanded as

θ = ε ⊗ P+
4∑

p=0

Φ
(p,0)
ii...ip

γii...ipξ , (4.28)

where Φ(p,0) ∈ Λ(p,0) and ε is a two-component spinor in the noncompact directions. Ex-

panding

Φ(p,0) = Φ̂(p,0) +
1

p
K∗ ∧ Ψ̂(p−1,0) , (4.29)

where ιKΦ̂, ιKΨ̂ = 0, and substituting P+, (4.28) reads

θ = ε ⊗
(
Φ̂(0,0) + Φ̂

(2,0)
ij γij + Φ̂

(1,0)
i γi + Φ̂

(3,0)
ijk γijk

)
ξ , (4.30)

where we have set

Φ̂
(1,0)
i := Ψ̂(0,0)K∗

i

Φ̂
(3,0)
ijk := Ψ̂

(2,0)
[ij K∗

k] . (4.31)

Equation (4.30) above is the explicit form of (4.27).

Zero modes. The zero modes on the fivebrane satisfy the Dirac equation (4.19) where,

after gauge-fixing θ has positive chirality along the fivebrane world-volume, θ = P+θ.

Having explained the spinor-form correspondence, we would now like to rewrite the Dirac

equation in terms of forms on the fivebrane. First, it would be useful to note the following

relations:

(Π‖)rmFrnpqγ
mγnpqθ− = 0

(Π‖)rmFrnpqγ
mγnpqθ+ =

3

4
Fmnpqγ

mnpqθ+ , (4.32)
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where θ± denotes the chirality of θ along the normal directions, and Π‖ is the projector

onto the fivebrane worldvolume defined in appendix B.1. Since θ has positive chirality

along the fivebrane world-volume, we have θ± = 1
2(1 ± Γ9)θ. It further follows that

Dmθ(p,0) = ε ⊗





∇mΦ̂ξ , p = 0

∇mΦ̂rγ
rξ − 1

4 Φ̂rFrstmγstξ , p = 1

∇mΦ̂rsγ
rsξ − 1

6Φ̂rnFrstmγst
nξ , p = 2

∇mΦ̂rstγ
rstξ − 3

4Φ̂rnpFrstmγst
npξ , p = 3

, (4.33)

where we have denoted θ(p,0) := ε ⊗ Φ̂
(p,0)
i1...ip

γi1...ipξ. Plugging (4.33) into (4.19), we obtain

0 =
{

(∇‖)mΦ̂ + 4(∇‖)pΦ̂pm

}
γmξ

0 =
{

(∇‖)mΦ̂n + 6(∇‖)pΦ̂pmn − 1

2
Fmn

pqΦ̂pq

}
Ωmnrsγrsξ

∗

0 =
{

(∇‖)mΦ̂np

}
Ωmnpqγqξ

∗

0 =
{

(∇‖)mΦ̂npq

}
Ωmnpq ,

(4.34)

where (∇‖)m := (Π‖)nm∇n, is the covariant derivative projected along the fivebrane. Pass-

ing to complex coordinates, the above can be seen to be equivalent to equations (3.6-3.9)

of [8], or (3.10-3.13) of [9].

Following the analysis of [9], the space of solutions to the above system of equations is

spanned by harmonic forms8 {Φ̂(p,0)
Ip

; p = 0 . . . 3}, where in addition the Φ̂(2,0)s satisfy the

constraint

H
{
FmnpqΦ̂

np(Π‖)qrdxr
}

= 0 (4.35)

and we have denoted by H the projector onto the space of harmonic forms. The corre-

sponding fermion zero modes are of the form

θ =
3∑

p=0

∑

Ip

εIp ⊗ XIpξ , (4.36)

where (no summation over p)

XIp =

{
Φ̂

(p,0)
Ip

γ(p), p 6= 2

Φ̂
(2,0)
I2

γ(2) + δΦ̂
(1,0)
I2

γ(1) + δΦ̂
(3,0)
I2

γ(3), p = 2
; Ip =

{
1, . . . , hp,0(Σ), p 6= 2

1, . . . , n, p = 2
,

(4.37)

8 The forms bΦ
(p,0)
Ip

, p = 1, 3, have a leg in the normal bundle, see definition (4.31). More precisely: they

are in H0(Σ, K ⊗ Ω3−p), p = 1, 3. Out of these, we can construct harmonic forms in H0,p(Σ) ∼= Hp(Σ,O),

by contracting with the antiholomorphic fourform on X. This is just the statement of Serre duality.
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the Φ̂
(p,0)
Ip

s are harmonic and {δΦ̂(1,0)
I2

, δΦ̂
(3,0)
I2

} is a special solution of the inhomogeneous

equation

(∇‖)+
[m

Φ̂n] + 6(∇‖)pΦ̂pmn =
1

2
Fmn

pqΦ̂I2,pq . (4.38)

In the above, n is the number of harmonic (2,0) forms on Σ which in addition satisfy the

constraint (4.35); the εIps are spinors in the 2 of Spin(3) (after Wick-rotating to Euclidean

signature). Note that (4.38) implies condition (4.35). The authors of [9] define a flux-

dependent generalization of the arithmetic genus:

χF := h0,0 − h1,0 + n − h3,0 . (4.39)

5. Instanton contributions

We can now proceed to the computation of the instanton contributions to the coupling (1.8).

The main result of the paper is arrived at in this section: instantons with four fermionic

zeromodes do not contribute to the superpotential.

5.1 Gravitino Kaluza-Klein reduction

Before proceeding to integrate over the fermion zeromodes, we will need the Kaluza-Klein

ansatz for the gravitino entering the vertex operator V in (3.5). As already discussed

in the introduction, only terms which depend on the descendants of the linear multiplets

contribute to the superpotential. Hence, the relevant part of the Kaluza-Klein ansatz for

the gravitino reads

{
Ψµ = i(ωI · J) γµχI ⊗ ξ∗ + c.c.

Ψm = χI ⊗ ωI,mpγ
pξ∗ + c.c. ; I = 1, . . . b2 ,

(5.1)

where the χIs are complex spinors in the 2 of Spin(3), and ωI ∈ H2(X, R). As is straight-

forward to see, the eleven-dimensional gravitino equation, ΓMD[MΨN ] = 0, is satisfied if

χI is a massless three-dimensional fermion,

6∇χI = 0 , (5.2)

provided

ωIyF = 0 . (5.3)

The implications of this condition were discussed extensively in the introduction. In this

picture, χI is massless if it corresponds to a zero eigenvalue of the matrix TIJ (in a di-

agonal basis). Alternatively this can be seen as follows. The quadratic part of the three-

dimensional action for the χIs comes from the dimensional reduction of the quadratic-

gravitino term in the eleven-dimensional supergravity action
∫

d11x
√

g11ΨMΓMNPDNΨP . (5.4)
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Plugging the Kaluza-Klein ansatz (5.1) in the action above, we obtain

Vol(X)

∫
d3x

√
g3

(
DIJ χ̄I 6∇χJ − 4

9
TIJ χ̄IχJ

)
, (5.5)

where

DIJ :=

∫

X

(
ωI ∧ ?ωJ +

2

3
ωI ∧ ωJ ∧ J ∧ J

)
(5.6)

and the Hodge star is with respect to the metric of the Calabi-Yau fourfold. In the above

we have made use of the identity

?(ωI ∧ ωJ ∧ J ∧ J) =
1

2

{
(ωI · J)(ωJ · J) − 2(ωI · ωJ)

}
, (5.7)

which can be proven with the help of (B.8). As advertised, massless fermions correspond

to zero eigenvalues of TIJ .

We remark that in (5.5) there is no coupling of the form

Vol(X)

∫
d3x

√
g3

(
WIJχIχJ + c.c.

)
. (5.8)

In the following we will investigate whether such a term is generated by instanton con-

tributions. In the context of three-dimensional supersymmetric field theory the fact that

such a term can indeed be generated by instanton effects, was demonstrated in [49].

5.2 Two zeromodes

Before coming to the subject of instantons with four fermionic zeromodes in the next

subsection, we will briefly comment on the case of instantons with two zeromodes (cor-

responding to the fivebrane wrapping rigid, isolated cycles). As can be seen from (4.36),

there are always two zero modes corresponding to p = 0:

θ = ε ⊗ ξ . (5.9)

These are the zero modes which come from the supersymmetry of the Calabi-Yau back-

ground.9 We would like to compute the instanton contribution of these zeromodes to the

superpotential. First, we need to define the integration over fermion zeromodes:
∫

d2ε εαεβ := Cαβ , (5.10)

where C in the equation above is the charge-conjugation matrix in three dimensions. It

follows that
∫

d2ε (χε)(εψ) = (χψ) , (5.11)

9In three-dimensional nomenclature the supersymmetry of the background is N = 2 (equivalently:

N = 1 in four dimensions), i.e. four real supercharges. The instanton breaks half the supersymmetries, as

can be seen from (4.22). Note that ξ in (5.9) is complex and ε is a spinor in the 2 of Spin(3). Henceforth

we are complexifying our notation for θ, Ψm, V . At any rate, θ must be complexified in order to pass to

Euclidean signature.
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for any two three-dimensional spinors χ, ψ in the 2 of Spin(3). To simplify the presentation,

we are using the notation (χψ) := (χTrCψ).

Integrating over the zeromodes using the above prescription, we find that the instanton

induces a two-fermion coupling of the form

χIχJ

∫
[DZ ′(σ)]vIvJe−SPST [Z(σ);g,C,Ψ] + c.c. , (5.12)

where

vI := 2i

∫

Σ
J ∧ J ∧ ωI (5.13)

and the path integration above does not include the zeromodes. In (5.13) all the forms

should be understood as pulled-back to Σ. In particular the pull-back of the almost complex

structure to Σ can be identified with Ĵ , which is discussed from the point of view of the

induced SU(3) structure on Σ in appendix B.1. Note that in the formula above the primitive

part of ωI is projected out.

We are not going to elaborate on the one-loop determinants, as this lies outside the

main focus of this paper. The result of the integration over the bosonic coordinates should

be obtainable using techniques similar to [12]. The integration over the fermionic variables

is proportional to the determinant of the flux-dependent Dirac operator γmD‖
m (away from

its kernel), as follows from equation (3.8).

5.3 Four zeromodes

In the presence of four zeromodes there are the following possibilities which we will examine

in turn: either h0,0 = n = 1 (corresponding to χF = 2) or h0,0 = hp,0 = 1, where p is odd

(corresponding to χF = 0). Recall that n is the number of harmonic (2,0) forms on Σ which

in addition satisfy the constraint (4.35). As we will see, no superpotential is generated in

either case. Since χF 6= 1 in all cases, we conclude that our result does not rule out the

possibility that in the presence of flux the arithmetic genus criterion should be replaced by

the condition χF = 1.

• h0,0 = n = 1

In this case we have χF = 2. Let us substitute the Kaluza-Klein ansatz (5.1) and the

expression for the zeromodes,

θ = ε ⊗ ξ + ζ ⊗
(
Φ̂mnγmn + δΦ̂mγm + δΦ̂mnpγ

mnp
)
ξ , (5.14)

into equation (3.5) for the gravitino vertex operator. Integrating over the zeromodes us-

ing (5.10) we get, up to a total worldvolume derivative,
∫

d2ε d2ζ V V = χIχJvIwJ , (5.15)

where vI was defined in (5.13) above and

wJ :=
2

9

∫

Σ
Θ̂ ∧ Φ̂ ∧ ωJ . (5.16)
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The object Θ̂ is defined by

Θ̂mn := ΩmnpqF
pq

rsΦ̂
rs (5.17)

and is a (0,2)-form on Σ. (Recall that in our conventions Ω is antiholomorphic). In

deriving this result, we had to perform some tedious but straightforward gamma-matrix

algebra making repeated use of the formulæ in the appendices A), (B, especially equa-

tions (B.5), (B.7). Moreover we have taken into account the normal flux condition and we

have implemented (1.10), as discussed in the introduction.

In the following we show that the right-hand side of (5.16) vanishes; no instanton-

induced superpotential is generated in this case. Before demonstrating this fact however,

let us note that the following group-theoretical reasoning can be used to gain insight into

the result (5.15). As follows from the form of the vertex operator, the integration over the

zeromodes receives three kinds of contributions:

χIχJvI ⊗ ωJ ⊗ F ⊗ (Φ̂(2,0) + δΦ̂(1,0) + δΦ̂(3,0))2⊗s , (5.18)

coming from terms of the form V V ∝ (ΨmΓmθ)(Ψθ3)F ,

χIχJvI ⊗∇ωJ ⊗ (Φ̂(2,0) + δΦ̂(1,0) + δΦ̂(3,0))2⊗s , (5.19)

coming from terms of the form V V ∝ (ΨmΓmθ)(∇Ψθ3), and

χIχJvI ⊗ ωJ ⊗ (Φ̂(2,0) + δΦ̂(1,0) + δΦ̂(3,0)) ⊗∇(Φ̂(2,0) + δΦ̂(1,0) + δΦ̂(3,0)) , (5.20)

coming from terms of the form V V ∝ (ΨmΓmθ)(Ψθ2∇θ). Contributions of the type (5.18)

transform in the10

(
(000) ⊕ (101)

)
⊗ (020) ⊗

(
(010) ⊕ (100) ⊕ (001)

)2⊗s

of SU(4). There are exactly three scalars in the decomposition of the tensor product above.

These we can write explicitly as:

S1 := χIχJvIωJ,mnΩmpijFijqrΦ̂
qrΦ̂p

n

S2 := χIχJvI(ωJ · J)ΩmpijFijqrΦ̂
qrΦ̂mp

S3 := χIχJvIδΦ̂
iδΦ̂jk

mΩijknFmnpqωJ,pq . (5.21)

The last one, however, vanishes by virtue of equation (5.3). Moreover, using equa-

tion (4.38), the scalars S1,2 can be expressed as a linear combination of R1, . . . R7 defined

in equation (5.26) below:

S1 = −2R2 + 4R5 − 4R6

S2 = 2R4 − 8R7 . (5.22)

10In the following we are using the Dynkin notation for A3.
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In deriving the above we have used the identity

δΦ̂qrsΩ
rsmp = −2

3
Ωijk[m(Π+)q

p]δΦ̂ijk , (5.23)

which can be proved using (B.5). A direct computation of the terms of the form (5.18),

yields the contribution

2i

9
S1 −

1

18
S2 = −4i

9
(R2 − 2R5 + 2R6) −

1

9
(R4 − 4R7) (5.24)

to the zeromode integral (5.15). The linear combination above can be written in a more

elegant way by noting that

iS1 −
1

4
S2 = χIχJvI ? (Θ̂ ∧ Φ̂ ∧ ωJ) , (5.25)

where the Hodge star is along Σ. In proving (5.25) we have made use of equation (B.18).

Taking into account that ωI is a harmonic (1,1) form and that therefore (ωI · J)

is a constant,11 it follows that ∇ωI transforms in the (201) ⊕ (102) of SU(4). Hence,

contributions of the type (5.19) transform in the

(
(201) ⊕ (102)

)
⊗

(
(010) ⊕ (100) ⊕ (001)

)2⊗s

of SU(4). As there are no scalars in the decomposition of the tensor product above, we

conclude that these terms vanish.

Taking into account that Φ̂(2,0) is a harmonic (2,0) form on a Kähler manifold, it follows

that ∇Φ̂(2,0) transforms in the (110) of SU(4). Similarly, ∇δΦ̂(1,0) transforms in the (000)⊕
(200) ⊕ (010) ⊕ (101) of SU(4). Finally, taking into account the last of equations (4.34), it

follows that ∇δΦ̂(3,0) transforms in the (010)⊕ (101)⊕ (002) of SU(4). Putting everything

together, it follows that contributions of the type (5.20) transform in the

(
(000) ⊕ (101)

)
⊗

(
(010)⊕(100) ⊕ (001)

)

⊗
(
(110) ⊕ (000) ⊕ (200) ⊕ 2(010) ⊕ 2(101) ⊕ (002)

)

of SU(4). There are exactly seven scalars in the decomposition of the tensor product

above: one coming from ∇Φ̂(2,0), three from ∇δΦ̂(1,0) and three from ∇δΦ̂(3,0). These can

11 A direct computation reveals that it is in fact bωI rather than ωI , where the hat denotes the pull-back

to Σ, which appears in the various invariants of this section. However, using the inclusion map

ι
∗ : H

p,q(X, R) −→ H
p,q(Σ, R) ,

we can think of ωI as the extension to X of the harmonic form bωI on Σ [50]. In the text, we do not make

an explicit distinction between ωI and bωI . See also the next footnote.
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be written explicitly as

R1 := χIχJvI∇mΦ̂ijΩ
ijpqδΦ̂pωJ,qm

R2 := χIχJvI∇mδΦ̂nΩmnijωJ,ipΦ̂
p
j

R3 := χIχJvI∇mδΦ̂nΩnijkωJ,kmΦ̂ij

R4 := χIχJvI(ωJ · J)∇mδΦ̂nΩmnijΦ̂ij

R5 := χIχJvI∇mδΦ̂ijkΩ
ijkqωJ,qpΦ̂

p
m

R6 := χIχJvI∇mδΦ̂ijkΩ
ijkqωJ,mpΦ̂

p
q

R7 := χIχJvI(ωJ · J)∇mδΦ̂ijkΩ
ijkqΦ̂qm . (5.26)

A direct computation of the terms of the form (5.20), yields the contribution

−4i(R1 + R3 + 2R5) (5.27)

to the zeromode integral (5.15).

Putting the contributions (5.24), (5.27) together, we arrive at equation (5.15). Note

that the invariants R4, . . . R7 as well as the linear combinations R1 +2R2 and R1 +R3, can

be written as total derivatives. This can readily be seen by taking into account that Ω is

covariantly constant while ω, Φ̂ are harmonic.12 It follows that the total contribution can

be cast in the form ∝ R2+total derivative. On the other hand, up to a total derivative, R2

is proportional to the right-hand-side of (5.25), as follows from (5.24), (5.25).

We are now ready to show that the left-hand-side of (5.16) vanishes identically. First

note that, as follows from (4.35) or (4.38), the projection of Θ̂ onto the space of harmonic

forms on Σ vanishes: H{Θ̂} = 0. It follows that
∫

Σ
Θ̂ ∧ Φ̂ ∧ J = 0 , (5.28)

since Φ̂∧J is harmonic (this can be seen by noting that ?Φ̂ = Φ̂∧J). Varying this equation

with respect to the Kähler structure, φI → φI + δφI , we get

∫

Σ

δΘ̂

δφI
∧ Φ̂ ∧ J +

∫

Σ
Θ̂ ∧ Φ̂ ∧ ωI = 0 . (5.29)

Furthermore, under a Kähler-structure variation the metric transforms as

δgmn =
∑

I

δφIωI,mpJn
p . (5.30)

12Note that in general the pull-back of the Christoffel connection from the total space X to the base Σ,

(∇‖)m, cannot be identified with the Christoffel connection b∇m associated with the metric on Σ. However

if bS is an arbitrary p-form on Σ whose extension to X is S, we have

(∇‖)mS
mm2 ...mp = ∇mS

mm2...mp = ( b∇)m
bS

mm2 ...mp .

The first equality follows from (B.21). The second equality follows from Γn
mn = g−1/2∂mg1/2 and the

fact that the determinants of the metrics X, Σ are equal, as can be seen from the explicit form of the

fibration (B.19).
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Note that the right-hand side above is automatically symmetric in the indices m, n. Taking

the above into account together with the fact that S2 is a total worldvolume derivative it

follows that
∫

Σ

δΘ̂

δφI
∧ Φ̂ ∧ J = 0 . (5.31)

In the derivation we made use of the identity

Φ̂mnΩmnpqΦ̂
rsFrs

qtωI,pt = −Φ̂mnΩmn
pqΦ̂s

tFpq
srωI,rt . (5.32)

From (5.29), (5.31) it finally follows that the right-hand side of (5.16) vanishes, as adver-

tised.

No potential is generated in the remaining cases either, as we now show.

• h0,0 = h1,0 = 1.

In this case we have χF = 0. As can be verified by direct computation, no potential

is generated in this case. The easiest way to arrive at this result is by the following

group-theoretical argument. It follows from the form of the vertex operator that the

integration over the zeromodes receives three kinds of contributions:

χIχJvI ⊗ ωJ ⊗ F ⊗ Φ̂(1,0) ⊗ Φ̂(1,0) , (5.33)

coming from terms of the form V V ∝ (ΨmΓmθ)(Ψθ3)F ,

χIχJvI ⊗∇ωJ ⊗ Φ̂(1,0) ⊗ Φ̂(1,0) , (5.34)

coming from terms of the form V V ∝ (ΨmΓmθ)(∇Ψθ3), and

χIχJvI ⊗ ωJ ⊗ Φ̂(1,0) ⊗∇Φ̂(1,0) , (5.35)

coming from terms of the form V V ∝ (ΨmΓmθ)(Ψθ2∇θ). Contributions of the

type (5.33) transform in the
(
(000) ⊕ (101)

)
⊗ (020) ⊗ (100)2⊗s

of SU(4). As there are no scalars in the decomposition of the tensor product above,

we conclude that these terms vanish.

Taking into account that ωI is a harmonic (1,1) form, it follows that ∇ωI transforms

in the (201) ⊕ (102) of SU(4). Hence, contributions of the type (5.34) transform in

the (
(201) ⊕ (102)

)
⊗ (100)2⊗s

of SU(4). As there are no scalars in the decomposition of the tensor product above,

we conclude that these terms vanish.

Taking into account that Φ̂(1,0) is harmonic, it follows that Φ̂(1,0) transforms in the

(200) of SU(4). Hence, contributions of the type (5.35) transform in the
(
(000) ⊕ (101)

)
⊗ (100) ⊗ (200)

of SU(4). As there are no scalars in the decomposition of the tensor product above,

we conclude that these terms vanish.
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• h0,0 = h3,0 = 1.

In this case we have χF = 0. As in the previous case, no potential is generated. This

can be shown e.g. by the same type of group-theoretical reasoning as before.

6. Discussion

Taking advantage of the recent progress in explicit theta-expansions in eleven-dimensional

superspace [17], we have performed a computation of the contribution of fivebrane instan-

tons with four fermionic zeromodes in M-theory compactifications on Calabi-Yau fourfolds

with (normal) flux. The calculus of fivebrane instantons in M-theory is still largely un-

explored, and we hope that our computation will initiate a more extensive study of these

phenomena directly in M-theory.

We have found that no superpotential is generated in this case — a result which is

compatible with replacing the arithmetic genus criterion by the condition χF = 1, where

χF is the flux-dependent ‘index’ of [9]. It would be interesting to reexamine this statement

when the condition of normal flux is relaxed.

It would be desirable to explore the obvious generalizations of our computation:

fivebrane instanton contributions to non-holomorphic couplings, and/or contributions to

higher-derivative and multi-fermion couplings as in [10]. The expansions of [17] can also

be used to study instantons with more than four zeromodes.

So far the precise relation between instanton calculus in M-theory [11, 12] and the rules

of D-instanton computations in string theory put forward in [51 – 53], has not been clearly

spelled out. Understanding this relation may help clarify some of the conceptual issues

associated with the M-theory calculus, see e.g. [12]. This would be another interesting

possibility for future investigation.

Last but not least, it is important to address the reservations, discussed in the intro-

duction, about the fivebrane action of [33] and to incorporate the topological considerations

of [37, 38] in a supersymmetric context.13
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A. Gamma-matrix identities

The gamma matrices in eight dimensions have the following properties

Symmetry :

(Cγ(n))
Tr = (−)

1
2
n(n−1)Cγ(n) , (A.1)

13I would like to thank Greg Moore for correspondence on this point.
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where C is the charge-conjugation matrix.

Hodge duality :

?γ(n) = (−)
1
2
n(n+1)γ(8−n)γ9 , (A.2)

where γ9 is the chirality matrix.

Complex conjugation:

γ∗
(n) = Cγ(n)C

−1 . (A.3)

Reality :

A Majorana-Weyl spinor ξ± in eight dimensions, where the subscript denotes the

chirality, satisfies

ξ†± = ±ξTr
± C , (A.4)

which, together with the complex conjugation above, imply

(γ(n)ξ±)∗ = ±Cγ(n)ξ± . (A.5)

Decomposition 10 → 3 + 8:

We decompose the eleven-dimensional matrices as follows:

Γµ = γµ ⊗ γ9 , µ = 0, 1, 2

Γm = 12 ⊗ γm , m = 3, . . . 10 . (A.6)

The eleven-dimensional charge-conjugation matrix decomposes as

C11 = C3 ⊗ C8γ9 , (A.7)

where γ9 is the chirality matrix in eight dimensions and C3, C8 are the charge-conjugation

matrices in three, eight dimensions respectively.

B. SU(4) structure

The existence of a nowhere-vanishing positive-chirality complex spinor ξ on X, implies

the reduction of the structure group to SU(4). The SU(4) structure can be equivalently

specified in terms of a complex self-dual fourform Ω and an almost complex structure J

satisfying

J ∧ Ω = 0

Ω ∧ Ω∗ =
2

3
J4 . (B.1)

In terms of ξ bilinears we have

Jmn = iξ†γmnξ

Ωmnpq = ξTrγmnpqξ (B.2)
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and we have normalized ξ†ξ = 1. Using the almost complex structure we can define the

projectors

(Π±)m
n :=

1

2
(δm

n ∓ iJm
n) (B.3)

with respect to which Ω is antiholomorphic

(Π−)m
iΩinpq = Ωmnpq ; (Π+)m

iΩinpq = 0 . (B.4)

The following useful identities can be proved e.g. by Fierzing

1

4! × 24
ΩrstuΩ∗rstu = 1

1

6 × 24
ΩirstΩ

∗mrst = (Π−)i
m

1

4 × 24
ΩijrsΩ

∗mnrs = (Π−)[i
m(Π−)j]

n

1

6 × 24
ΩijkrΩ

∗mnpr = (Π−)[i
m(Π−)j

n(Π−)k]
p

1

4! × 24
ΩijklΩ

∗mnpq = (Π−)[i
m(Π−)j

n(Π−)k
p(Π−)l]

q , (B.5)

and

γmξ = (Π−)m
nγnξ

γmnξ = −iJmnξ − 1

8
Ωmnpqγ

pqξ∗

γmnpξ = −3iJ[mnγp]ξ −
1

2
Ωmnpqγ

qξ∗

γmnpqξ = −3J[mnJpq]ξ +
3i

4
J[mnΩpq]ijγ

ijξ∗ + Ωmnpqξ
∗ . (B.6)

The action of γm1...mp , p ≥ 5, on ξ can be related to the above formulæ, using the Hodge

properties of gamma matrices given in appendix A. From the above it follows that

ξ†ξ = 1; ξTrξ = 0

ξ†γmnξ = −iJmn; ξTrγmnξ = 0

ξ†γmnpqξ = −3J[mnJpq]; ξTrγmnpqξ = Ωmnpq

ξ†γmnpqrsξ = 15iJ[mnJpqJrs]; ξTrγmnpqrsξ = 0

ξ†γmnpqrstuξ = 105J[mnJpqJrsJtu]; ξTrγmnpqrstuξ = 0 , (B.7)

where we have made use of the identities

εmnpqrstuJrsJ tu = 24J[mnJpq]

εmnpqrstuJ tu = 30J[mnJpqJrs]

εmnpqrstu = 105J[mnJpqJrsJtu] . (B.8)

Note that the bilinears ξTrγ(p)ξ, ξ†γ(p)ξ, vanish for p odd. Finally, the last line of equa-

tion (B.5) together with the last line of the equation above imply

Ω[ijklΩ
∗
mnpq] =

8

35
εijklmnpq . (B.9)
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B.1 SU(4) vs SU(3)

In the case where there exists a nowhere-vanishing complex vector K, one can construct a

corresponding nowhere-vanishing negative-chirality complex spinor

ξ− := Kmγmξ . (B.10)

This implies the reduction of the structure group of X to SU(3). Without loss of generality

we can take K to be antiholomorphic with respect to the almost complex structure J ,

(Π−)m
nKn = Km; (Π+)m

nKn = 0 , (B.11)

and to satisfy

KmKm = 0; K∗
mKm = 2 . (B.12)

The SU(3) structure can be given in terms of an antiholomorphic (0,3) form Ω̂ and a (1,1)

form Ĵ defined by

J = Ĵ − i

2
K ∧ K∗

Ω = iK ∧ Ω̂ , (B.13)

which satisfy ιK Ĵ , ιKΩ̂, ιK∗Ω̂ = 0. Moreover, we can define antiholomorphic projectors (Π̂)

with respect to the structure Ĵ :

(Π−)m
n = (Π̂−)m

n +
1

2
KmK∗n . (B.14)

The complex vector K specifies an almost product structure given by

Rm
n := KmK∗n + K∗

mKn − δm
n . (B.15)

Moreover every tensor can be decomposed into directions along and perpendicular to the

K-orthogonal subspaces, using the projectors

(Π‖)nm := δn
m − 1

2
(KmK∗n + K∗

mKn)

(Π⊥)nm :=
1

2
(KmK∗n + K∗

mKn) . (B.16)

In particular, the metric decomposes as

gmn = Gmn +
1

2
(KmK∗

n + K∗
mKn) , (B.17)

where KmGmn = 0. Finally, note the useful identity

ε‖mnpqrs = −15Ĵ[mnĴpqĴrs] , (B.18)

which can be proven by contracting the last line of (B.8) with KtK∗u.
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(Anti)holomorphic six-cycles. We shall be interested in particular in the case where

the almost product structure on X, defined in the previous section, is integrable and the

metric on X can be brought to the standard form of a fibration over a six-cycle Σ:

ds2(X) = Gmn(x)dxm ⊗ dxn + (dz + A) ⊗ (dz∗ + A∗) . (B.19)

This is of the form (B.17), where K∗ = dz + A(x) is the one-form dual of the holomorphic

Killing vector ∂/∂z, the xms are the coordinates on the base, z is a complex coordinate

on the normal fibre and A(x) is a complex connection one-form. The six-cycle defined by

the fibration is a holomorphic cycle, with a similar definition for an antiholomorphic cycle.

We would like to stress that in general X is not the total space of the normal bundle over

Σ, but this approximation becomes more accurate as the size of Σ is scaled up.

Note that for any Sm such that Sm = (Π⊥)qmSq, we have

∇‖
mSm = (Π‖)qm∇q(Π

⊥)mn Sn =
1

2
(Π‖)mq(Kn∇qK

∗
m + c.c.)Sn = 0 . (B.20)

In the first equality we have used the orthogonality of Π⊥, Π‖. In the second equality we

have taken (B.16) into account, and we have noted that Km(Π‖)nm = 0. In the last equality

we have taken into account that (Π‖)mn is symmetric, and that K is Killing. Similarly we

can prove that if Sm = (Π‖)qmSq, we have

∇⊥
mSm = 0 . (B.21)

Equations (B.20), (B.21) can also be generalized to p-forms.

C. Gravitino vertex operator

In this appendix we give the details of the derivation of the gravitino vertex operator of

section 3.1, equation (3.5).

For any Q, let ∆Q the part of Q linear in the gravitino. From (3.2) and the analysis

of the previous sections we find

gmn = g(0)
mn + g(1)

mn + g(2)
mn + O(Ψ, θ3)

∆gmn = ∆g(1)
mn + ∆g(2)

mn + ∆g(3)
mn + O(Ψ2, θ5) , (C.1)

where

g(0)
mn = Gmn

g(1)
mn = −i(D(mθΓn)θ)

g(2)
mn = −1

4
(DmθΓaθ)(DnθΓaθ)

∆g(1)
mn = −2i(Ψ(mΓn)θ)

∆g(2)
mn = −(Ψ(mΓaθ)(Dn)θΓaθ)

∆g(3)
mn =

1

3
(Ψ(mGΓn)θ) +

1

3
(ΨpqI(m

pqΓn)θ) (C.2)
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For the inverse of the Green-Schwarz metric we have

gmn = gmn
(0) + gmn

(1) + gmn
(2) + O(Ψ, θ3)

∆gmn = ∆gmn
(1) + ∆gmn

(2) + ∆gmn
(3) + O(Ψ2, θ5) , (C.3)

where

gmn
(0) = Gmn

gmn
(1) = i(D(mθΓn)θ)

gmn
(2) =

1

4
(DmθΓaθ)(DnθΓaθ)− 1

4
(DmθΓpθ)(DnθΓpθ)

− 1

4
(DpθΓmθ)(DpθΓnθ) − 1

2
(DpθΓ(mθ)(Dn)θΓpθ)

∆gmn
(1) = − Gmk∆g

(1)
kl Gln

∆gmn
(2) = − Gmk∆g

(2)
kl Gln − 2g

k(m
(1) ∆g

(1)
kl Gn)l

∆gmn
(3) = − Gmk∆g

(3)
kl Gln − 2g

k(m
(1) ∆g

(2)
kl Gn)l

− 2g
k(m
(2) ∆g

(1)
kl Gn)l − gmk

(1) ∆g
(1)
kl gln

(1) . (C.4)

For later use note that

1√−g
=

( 1√−g

)(0)
+

( 1√−g

)(1)
+

( 1√−g

)(2)
+ O(Ψ, θ3) , (C.5)

where

( 1√−g

)(0)
=

1√
−G

( 1√−g

)(1)
=

i

2
√
−G

(DmθΓmθ)

( 1√−g

)(2)
= − 1

8
√
−G

{
(DmθΓmθ)2 − (DmθΓaθ)(DmθΓaθ)

+ (DmθΓpθ)(DmθΓpθ) + (DmθΓpθ)(DpθΓmθ)
}

. (C.6)

Moreover

Hmnp = H(0)
mnp + H(1)

mnp + H(2)
mnp + O(Ψ, θ3)

∆Hmnp = ∆H(1)
mnp + ∆H(2)

mnp + ∆H(3)
mnp + O(Ψ2, θ5) , (C.7)
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where

H(0)
mnp = Fmnp − cmnp

H(1)
mnp =

3i

2
(D[mθΓnp]θ)

H(2)
mnp =

3

4
(D[mθΓn

aθ)(Dp]θΓaθ)

∆H(1)
mnp = 3i(Ψ[mΓnp]θ)

∆H(2)
mnp = (Ψ[mΓn

aθ)(Dp]θΓaθ) + 2(Ψ[mΓaθ)(DnθΓp]aθ)

∆H(3)
mnp = −1

2
(Ψ[mGΓnp]θ) − 1

2
(ΨpqI[m

pqΓnp]θ) . (C.8)

Similarly

vp = v(0)
p + v(1)

p + v(2)
p + O(Ψ, θ3)

∆vp = ∆v(1)
p + ∆v(2)

p + ∆v(3)
p + O(Ψ2, θ5) , (C.9)

where

v(0)
p = ap

v(1)
p =

i

2
(DmθΓnθ)amanap

v(2)
p =

1

8
apaman

{
(DmθΓaθ)(DnθΓaθ) − (DmθΓpθ)(DnθΓpθ) − (DpθΓmθ)(DpθΓnθ)

− 2(DpθΓmθ)(DnθΓpθ) − 3(DmθΓnθ)(DqθΓrθ)aqar

}

∆v(1)
p =

1

2
apakal∆gkl

(1)

∆v(2)
p =

1

2
v(1)
p akal∆gkl

(1) + apakv
(1)
l ∆gkl

(1) +
1

2
apakal∆gkl

(2)

∆v(3)
p =

1

2
v(2)
p akal∆gkl

(1) + apakv
(2)
l ∆gkl

(1) + v(1)
p v

(1)
k al∆gkl

(1) +
1

2
apv

(1)
k v

(1)
l ∆gkl

(1)

+
1

2
v(1)
p akal∆gkl

(2) + apakv
(1)
l ∆gkl

(2) +
1

2
apakal∆gkl

(3)

ap :=
∂pa√−Gmn∂ma∂na

. (C.10)

Also

H̃mn = H̃(0)
mn + H̃(1)

mn + H̃(2)
mn + O(Ψ, θ3)

∆H̃mn = ∆H̃(1)
mn + ∆H̃(2)

mn + ∆H̃(3)
mn + O(Ψ2, θ5) , (C.11)
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where

H̃(k)
mn =

1

6
εm′n′pqrs

( 1√−g
gmm′gnn′vpHqrs

)(k)

∆H̃(k)
mn =

1

6
εm′n′pqrs

k∑

i=1

{( 1√−g
gmm′gnn′Hqrs

)(k−i)
∆v(i)

p

+
( 1√−g

gmm′gnn′vp

)(k−i)
∆H(i)

qrs −
1

2

( 1√−g
gmm′gnn′gklvpHqrs

)(k−i)
∆g

(i)
kl

+ 2∆g
(i)
[m|m′

( 1√−g
g|n]n′vpHqrs

)(k−i)}
, k = 1, 2, 3 . (C.12)

Finally, for the action we find

∆S = TM5

∫

Σ
d6x

√
−G

3∑

k=1

{
∆L(k)

1 + ∆L(k)
2 + ∆L(k)

3 + O(Ψ2, θ5)
}

(C.13)

where

∆L(k)
1 =

1

2

√
det(Ar

s)
k∑

i=1

({
1 +

1

2
tr(A−1B) +

1

8

(
tr(A−1B)

)2
− 1

4
tr(A−1B)2

}

× (A−1 − A−1BA−1 + A−1BA−1BA−1)mn
)(k−i)

(∆gmn − i∆H̃mn)(i)

Amn := Gmn + iH̃(0)
mn

Bmn := (gmn + iH̃mn)(1) + (gmn + iH̃mn)(2) . (C.14)

Also

∆L(k)
2 =

1

4!
√
−G

εmnpqrs
k∑

i=1

{(
Hmntvpvlg

tl
)(k−i)

∆H(i)
qrs +

(
Hqrsvpvlg

tl
)(k−i)

∆H
(i)
mnt

+
(
HqrsHmntvlg

tl
)(k−i)

∆v(i)
p +

(
HqrsHmntvpg

tl
)(k−i)

∆v
(i)
l

+
(
HqrsHmntvpvl

)(k−i)
∆gtl

(i)

}

∆L(k)
3 = − 1

6!
√
−G

εmnpqrs
(
∆C(k)

mnpqrs + 10Fmnp∆H(k)
qrs

)
, (C.15)

where

∆C(1)
m1...m6

= −6i(Ψ[m1
Γm2...m6]θ)

∆C(2)
m1...m6

= 10(Ψ[m1
Γaθ)(Dm2θΓm3...m6]aθ) − 5(Ψ[m1

Γm2...m5|aθ)(D|m6]θΓaθ)

∆C(3)
m1...m6

= (Ψ[m1
GΓm2...m6]θ) + (ΨpqI[m1

pqΓm2...m6]θ) . (C.16)

The gravitino vertex operator at order θk is given by

V = TM5

∫

Σ
d6x

√
−G

(
Ψα

mV m
α + Ψα

mnV mn
α

)
, (C.17)
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where

V m
α :=

∂

∂Ψ
α
m

(
∆L(k)

1 + ∆L(k)
2 + ∆L(k)

3

)
|Ψ=0

V mn
α :=

∂

∂Ψ
α
mn

(
∆L(k)

1 + ∆L(k)
2 + ∆L(k)

3

)
|Ψ=0 (C.18)

and we have denoted by Ψ
α
mn the gravitino field strength: Ψmn := D[mΨn]. Substituting

the preceding formulæ in (C.18) we arrive at the following explicit expressions

Order θ.

V (1)mn
α =0

V (1)m
α = − i

√
det(Ai

j)(A−1)(mn)(Γmθ)α∂nXm

+
εlpqrs

m

6
√
−G

√
det(Ai

j)(A−1)[mn]
{

(Γnθ)α∂lX
m + (Γlθ)α∂nXm

}
ap(Fqrs − cqrs)

+
εklpqrs

12
√
−G

√
det(Ai

j)(A−1)klap

×
{
(Fqrs − cqrs)

[
aman(Γmθ)α∂nXm + (Γmθ)α∂mXm

]
+ 3(Γqrθ)α∂sX

m
}

+
iεklpqrs

12
√
−G

ak(Flpq − clpq)

{
(Frst − crst)

[
atan(Γnθ)α +

1

2
(Γtθ)α

]
+

1

2
(Γrsθ)α

}
am∂mXm

+
iεklpqrs

24
√
−G

aka
n(Flpq − clpq)(Frs

t − crs
t)(Γnθ)α∂tX

m

+
iεklpqrs

5!
√
−G

{
15atak(Flpt − clpt)(Γqrθ)α − 10atak(Flpq − clpq)(Γrtθ)α

− 5Fklp(Γqrθ)α − (Γklpqrθ)α

}
∂sX

m . (C.19)

Order θ2Dθ.

V (2)mn
α = 0

V (2)m
α = −

{
(Γaθ)α(DmθΓaθ)− 2(Γnθ)α(D(mθΓn)θ)

− 1

6
(ΓmΓnaθ)α(DnθΓaθ) +

1

6
(ΓmΓnpθ)α(DnθΓpθ)

}
∂mXm + . . . , (C.20)

where the ellipses stand for terms which drop out in the case of normal flux (see below).

We have also dropped terms proportional to ΓmDmθ, which do not contain the zero mode.

Order θ3.

V (3)mn
α =

i

6
(Ip

mn)α
βV

(1)p
β

V (3)m
α =

i

6
Gα

βV
(1)m

β . (C.21)
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Normal flux. In the case of normal flux, i.e. when the world-volume two-form tensor is

flat (Fmnp = 0) and the pullback of the three-form potential onto the fivebrane vanishes

(cmnp = 0), the previous expressions simplify considerably. In particular we have,

iV (1)m
α = (Γmθ)α∂mXm +

εklpqrs

5!
√
−G

(Γklpqrθ)α∂sX
m

= 2(Γmθ)α∂mXm . (C.22)

In deriving the second equality above we have taken into account that

εm1...mpmp+1...m6

p!
√
−G

Γmp+1...m6 = −(−1)p(p−1)/2Γm1...mpP+ , (C.23)

where the projector P+ is defined in equation (4.22), and we have noted that after gauge-

fixing the physical fermion modes satisfy θ = P+θ. Moreover, the terms of the form Ψθ2Dθ

can be read off of equation (C.20). Taking (C.23), (C.21) into account and Wick-rotating,

we finally arrive at equation (3.5).

D. Notation/conventions

For the convenience of the reader we give here an index of our main conventions and

notation.

M = (m, µ): target-space bosonic, fermionic curved indices

A = (a, α): target-space bosonic, fermionic flat indices

M = (m,µ): world-volume bosonic, fermionic curved indices (from the beginning of

the paper, up to and including section 4.2)

m,n, p, . . . : bosonic indices along X (from section 4.3 to the end of the paper)

A = (a, α): world-volume bosonic, fermionic flat indices

ZM = (Xm, θ µ): bosonic, fermionic superembedding coordinates

em
a: the θ = 0 component of Em

a

Ψm
α: the θ = 0 component of Em

α

gmn := Em
aEn

bηab

Gmn := em
aen

bηab

(ωm)α
β: the spin connection compatible with Gmn

cmnp: the θ = 0 component of Cmnp

Gmnpq := 4∂[mcnpq]

(Dm)α β := δα
β∂m − 1

4(ωm)α β + 1
36

(
(Γabc)α βGmabc − 1

8 (Γm
abcd)α βGabcd

)

(Rmn)α β: the curvature of the supercovariant derivative (Dm)α β

Convention: On x-space forms we convert between flat and curved indices using em
a.

Convention: We pull-back superforms (x-space forms) onto the world volume using

∂mZM (∂mXm). Hence em
a := ∂mXmem

a, but Em
a := ∂mZMEM

a.

Convention: We raise/lower curved world-volume indices on superforms using the

Green-Schwarz metric gmn

Convention: We raise/lower curved world-volume indices on x-space forms using the

metric Gmn
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